778 research outputs found

    Resolving Star Formation on Sub-Kiloparsec Scales in the High-Redshift Galaxy SDP.11 Using Gravitational Lensing

    Full text link
    We investigate the properties of the interstellar medium, star formation, and the current-day stellar population in the strongly-lensed star-forming galaxy H-ATLAS J091043.1-000321 (SDP.11), at z = 1.7830, using new Herschel and ALMA observations of far-infrared fine-structure lines of carbon, oxygen and nitrogen. We report detections of the [O III] 52 um, [N III] 57 um, and [O I] 63 um lines from Herschel/PACS, and present high-resolution imaging of the [C II] 158 um line, and underlying continuum, using ALMA. We resolve the [C II] line emission into two spatially-offset Einstein rings, tracing the red- and blue-velocity components of the line, in the ALMA/Band-9 observations at 0.2" resolution. The values seen in the [C II]/FIR ratio map, as low as ~ 0.02% at the peak of the dust continuum, are similar to those of local ULIRGs, suggesting an intense starburst in this source. This is consistent with the high intrinsic FIR luminosity (~ 3 x 10^12 Lo), ~ 16 Myr gas depletion timescale, and < 8 Myr timescale since the last starburst episode, estimated from the hardness of the UV radiation field. By applying gravitational lensing models to the visibilities in the uv-plane, we find that the lensing magnification factor varies by a factor of two across SDP.11, affecting the observed line profiles. After correcting for the effects of differential lensing, a symmetric line profile is recovered, suggesting that the starburst present here may not be the result of a major merger, as is the case for local ULIRGs, but instead could be powered by star-formation activity spread across a 3-5 kpc rotating disk.Comment: 17 pages, 8 figures, 3 tables, accepted for publication in the Astrophysical Journa

    MIPS J142824.0+352619: A Hyperluminous Starburst Galaxy at z=1.325

    Full text link
    Using the SHARC-II camera at the Caltech Submillimeter Observatory to obtain 350 micron images of sources detected with the MIPS instrument on Spitzer, we have discovered a remarkable object at z=1.325+/-0.002 with an apparent Far-Infrared luminosity of 3.2(+/-0.7) x 10^13 Lsun. Unlike other z>1 sources of comparable luminosity selected from mid-IR surveys, MIPS J142824.0+352619 lacks any trace of AGN activity, and is likely a luminous analog of galaxies selected locally by IRAS, or at high redshift in the submillimeter. This source appears to be lensed by a foreground elliptical galaxy at z=1.034, although the amplification is likely modest (~10). We argue that the contribution to the observed optical/Near-IR emission from the foreground galaxy is small, and hence are able to present the rest-frame UV through radio Spectral Energy Distribution of this galaxy. Due to its unusually high luminosity, MIPS J142824.0+352619 presents a unique chance to study a high redshift dusty starburst galaxy in great detail.Comment: 6 pages, 3 figures, accepted for publication in Ap

    Simulations and cosmological inference: A statistical model for power spectra means and covariances

    Full text link
    We describe an approximate statistical model for the sample variance distribution of the non-linear matter power spectrum that can be calibrated from limited numbers of simulations. Our model retains the common assumption of a multivariate Normal distribution for the power spectrum band powers, but takes full account of the (parameter dependent) power spectrum covariance. The model is calibrated using an extension of the framework in Habib et al. (2007) to train Gaussian processes for the power spectrum mean and covariance given a set of simulation runs over a hypercube in parameter space. We demonstrate the performance of this machinery by estimating the parameters of a power-law model for the power spectrum. Within this framework, our calibrated sample variance distribution is robust to errors in the estimated covariance and shows rapid convergence of the posterior parameter constraints with the number of training simulations.Comment: 14 pages, 3 figures, matches final version published in PR

    Spectroscopic Redshifts to z > 2 for Optically Obscured Sources Discovered with the Spitzer Space Telescope

    Full text link
    We have surveyed a field covering 9.0 degrees^2 within the NOAO Deep Wide-Field Survey region in Bootes with the Multiband Imaging Photometer on the Spitzer Space Telescope (SST) to a limiting 24 um flux density of 0.3 mJy. Thirty one sources from this survey with F(24um) > 0.75 mJy which are optically very faint (R > 24.5 mag) have been observed with the low-resolution modules of the Infrared Spectrograph on SST. Redshifts derived primarily from strong silicate absorption features are reported here for 17 of these sources; 10 of these are optically invisible (R > 26 mag), with no counterpart in B_W, R, or I. The observed redshifts for 16 sources are 1.7 < z < 2.8. These represent a newly discovered population of highly obscured sources at high redshift with extreme infrared to optical ratios. Using IRS spectra of local galaxies as templates, we find that a majority of the sources have mid-infrared spectral shapes most similar to ultraluminous infrared galaxies powered primarily by AGN. Assuming the same templates also apply at longer wavelengths, bolometric luminosities exceed 10^13 L(solar).Comment: Accepted for publication on 7 Feb 2005 in ApJL. 7 pages 2 figure

    HST Morphologies of z~2 Dust Obscured Galaxies I: Power-law Sources

    Get PDF
    We present high spatial resolution optical and near-infrared imaging obtained using the ACS, WFPC2 and NICMOS cameras aboard the Hubble Space Telescope of 31 24um--bright z~2 Dust Obscured Galaxies (DOGs) identified in the Bootes Field of the NOAO Deep Wide-Field Survey. Although this subset of DOGs have mid-IR spectral energy distributions dominated by a power-law component suggestive of an AGN, all but one of the galaxies are spatially extended and not dominated by an unresolved component at rest-frame UV or optical wavelengths. The observed V-H and I-H colors of the extended components are 0.2-3 magnitudes redder than normal star-forming galaxies. All but 1 have axial ratios >0.3, making it unlikely that DOGs are composed of an edge-on star-forming disk. We model the spatially extended component of the surface brightness distributions of the DOGs with a Sersic profile and find effective radii of 1-6 kpc. This sample of DOGs is smaller than most sub-millimeter galaxies (SMGs), but larger than quiescent high-redshift galaxies. Non-parametric measures (Gini and M20) of DOG morphologies suggest that these galaxies are more dynamically relaxed than local ULIRGs. We estimate lower limits to the stellar masses of DOGs based on the rest-frame optical photometry and find that these range from ~10^(9-11) M_sun. If major mergers are the progenitors of DOGs, then these observations suggest that DOGs may represent a post-merger evolutionary stage.Comment: 23 pages, 9 figures, 6 tables, accepted to ApJ; lower limits on stellar mass revised upwards by factor of (1+z

    A Spitzer Infrared Spectrograph Survey of Warm Molecular Hydrogen in Ultra-luminous Infrared Galaxies

    Get PDF
    We have conducted a survey of Ultra-luminous Infrared Galaxies (ULIRGs) with the Infrared Spectrograph on the Spitzer Space Telescope, obtaining spectra from 5.0-38.5um for 77 sources with 0.02<z <0.93. Observations of the pure rotational H2 lines S(3) 9.67um, S(2) 12.28um, and S(1) 17.04um are used to derive the temperature and mass of the warm molecular gas. We detect H2 in 77% of the sample, and all ULIRGs with F(60um)>2Jy. The average warm molecular gas mass is ~2x10^8solar-masses. High extinction, inferred from the 9.7um silicate absorption depth, is not observed along the line of site to the molecular gas. The derived H2 mass does not depend on F(25um)/F(60um), which has been used to infer either starburst or AGN dominance. Similarly, the molecular mass does not scale with the 25 or 60um luminosities. In general, the H2 emission is consistent with an origin in photo-dissociation regions associated with star formation. We detect the S(0) 28.22um emission line in a few ULIRGs. Including this line in the model fits tends to lower the temperature by ~50-100K, resulting in a significant increase in the gas mass. The presence of a cooler component cannot be ruled out in the remainder of our sample, for which we do not detect the S(0) line. The measured S(7) 5.51um line fluxes in six ULIRGs implies ~3x10^6 solar-masses of hot (~1400K) H2. The warm gas mass is typically less than 1% of the cold gas mass derived from CO observations.Comment: Accepted ApJ 01 September 2006, v648n1 issue. 14 pages 12 figures IRAS 06361-6217 the f25/f60 ratio is 0.10 not 1.0

    Spitzer IRS Spectra of Optically Faint Infrared Sources with Weak Spectral Features

    Get PDF
    Spectra have been obtained with the low-resolution modules of the Infrared Spectrograph (IRS) on the Spitzer Space Telescope (Spitzer) for 58 sources having fν_{\nu}(24 micron) > 0.75 mJy. Sources were chosen from a survey of 8.2 deg2^{2} within the NOAO Deep Wide-Field Survey region in Bootes (NDWFS) using the Multiband Imaging Photometer (MIPS) on the Spitzer Space Telescope. Most sources are optically very faint (I > 24mag). Redshifts have previously been determined for 34 sources, based primarily on the presence of a deep 9.7 micron silicate absorption feature, with a median z of 2.2. Spectra are presented for the remaining 24 sources for which we were previously unable to determine a confident redshift because the IRS spectra show no strong features. Optical photometry from the NDWFS and infrared photometry with MIPS and the Infrared Array Camera on the Spitzer Space Telescope (IRAC) are given, with K photometry from the Keck I telescope for some objects. The sources without strong spectral features have overall spectral energy distributions (SEDs) and distributions among optical and infrared fluxes which are similar to those for the sources with strong absorption features. Nine of the 24 sources are found to have feasible redshift determinations based on fits of a weak silicate absorption feature. Results confirm that the "1 mJy" population of 24 micron Spitzer sources which are optically faint is dominated by dusty sources with spectroscopic indicators of an obscured AGN rather than a starburst. There remain 14 of the 58 sources observed in Bootes for which no redshift could be estimated, and 5 of these sources are invisible at all optical wavelengths.Comment: Accepted by Ap
    • …
    corecore